

1 - 2**ΟΚΤΩΒΡΙΟΥ 2021** 

#### Διημερίδα με θέμα:

#### ΔΙΛΝΜΑΤΑ & ΘΕΜΑΤΑ ΑΙΧΜΉς Στην ΟΓΚΟΛΟΓΙΑ

Χορηγούνται 14 Μόρια Συνεχιζόμενης Ιατρικής Εκπαίδευσης (CME-CPD)



επιστημονικό πρόγραμμα

**CROWNE PLAZA** ΑΘΗΝΑ

# hypofractionation in NSCLC

Ιωάννης Γεωργακόπουλος Ακτινοθεραπευτής Ογκολόγος

#### outline

- general facts
- radiotherapy principles by radiobiology perspective
- hypofractionation
  - mild hypofractionation
  - extreme hypofractionation (stereotactic ablative therapy)
- stereotactic ablative therapy & immunetherapy

## general facts

### general facts

- Iung cancer the most common cause of cancer death
- NSCLC most common type
- 17% localized; 22% locally advanced; 57% distant
- comorbidities

#### radiation therapy in lung cancer

- one of the main treatment modalities
- technological advancements (4DCT, daily image guidance, PET CT) even more accurate and conformal treatments

## radiobiology

## radiobiology

 macroscopic radiobiological models tumour control probability (TCP) normal tissue complication probability (NTCP)
extensive knowledge of the dependence of cell killing on

- total dose
- fraction size
- interfraction interval
- importance of other factors like hypoxic status

#### 5 Rs of RT

the biological factors that influence the response of normal and neoplastic tissues to fractionated radiotherapy

- Repair
- Reassortment
- Reoxygenation
- Repopulation
- Radiosensitivity

 $\alpha/\beta$ 

#### $\alpha D = \beta D^2 \rightarrow D = \alpha/\beta$

- α/β: the dose that the contribution on cell death from one hit is equal with the contribution on cell death from multiple hits
- $\alpha/\beta$ : is characteristic for each tumor type and normal tissues
- $\hfill clinical significance: the lower the <math display="inline">\alpha/\beta$  the higher radiosensitivity to fraction size

## $\alpha/\beta$ clinical significance

- tumors with a high α/β can be reasonably treated with conventionally fractionated RT
- tumors with a very low  $\alpha/\beta$  are more responsive to a larger fraction size
- tumors  $\alpha/\beta \simeq 10$
- normal tissues  $\alpha/\beta \simeq 2$